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The results of an experimental investigation to determine the influence of two
physiologically relevant inlet conditions on the flow physics downstream of an
idealized stenosis are presented. The two inlet conditions are an asymmetric mean
inlet velocity profile and an asymmetric mean inlet velocity profile plus secondary
flow, as found downstream of a bend. The stenosis is modelled as an axisymmetric
75 % area reduction occlusion with a length-to-diameter ratio of 2. The flow was
forced by a 10-harmonic carotid artery-inspired waveform with mean, maximum and
minimum Reynolds numbers of 364, 1424 and 24, respectively, and a Womersley
number of 4.6. Laser Doppler velocimetry and particle image velocimetry were used
to characterize the spatial and temporal evolution of a baseline case (no disturbances)
as well as the two physiologically relevant inlet conditions. The asymmetric inlet
velocity profile was found to reduce the region of influence of the stenosis by forcing
the stenotic jet towards the tube wall via an induced non-uniform radial pressure
gradient, similar to the Coanda effect. Curvature-induced secondary flow was found
to play a minor role in the near-stenosis region. Vortex ring formation was relatively
unaffected by the mean velocity gradient and secondary flow. Evidence of remnants
of the starting vortex ring was observed far downstream in all cases.

1. Introduction
The American Heart Association recently reported that 71 million Americans suffer

from cardiovascular disease (Thom et al. 2006). Evidence linking cellular biochemical
response to mechanical factors such as shear stress on the endothelial cells lining
the arterial wall has resulted in a surge in research efforts aimed at understanding
the fluid mechanics of the vasculature and the impact of pathologies (see Frangos,
McIntire & Eskin 1988; Ku 1997; Topper & Gimbrone Jr. 1999; Berger & Jou 2000;
Stroud, Berger & Saloner 2002; Hsiai et al. 2002, 2003; Tarbell, Weinbaum & Kamm
2005). Mechanisms of force detection and mechanotransduction, the transformation
of forces applied to cells into biochemical responses by cells, are relatively poorly
understood. Seminal work by Dewey et al. (1981) and Nerem, Levesque & Cornhill
(1981) on the morphology of endothelial cells demonstrating that the cells aligned
in the direction of shear stress indicated that cells are dynamic, responding to
their hemodynamic environment. The inter-relation between forces and biochemical
response are now known to be fascinatingly complex (Kamm 2002; Tarbell et al.
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2005; Tarbell & Phakis 2006). Wall shear stress, in particular, has been shown to
regulate atheroprotective functions via several chemical mediators (Frangos et al.
1988; Tarbell et al. 2005). The mechanisms by which endothelial cells detect shear
stress is the subject of intense theoretical and experimental investigation. There is
strong evidence suggesting that the glycocalyx, a thin coating of macromolecules lining
and the luminal face of the endothelial cell monolayer, may play a key role in sensing
the hemodynamic environment (Tarbell et al. 2005; Tarbell & Phakis 2006). McCann
(2005) investigated endothelial cell response to stenotic flow in a steady, axisymmetric
flow environment. McCann decomposed the post-stenotic region into near- and far-
field zones. The near-field ranged from 0 to 15D and the far-field stretched from 15D

to 30D. The near-field region, which encompassed the recirculation and re-attachment
regions, had atherogenic endothelial cell activation, while the character of the far-field
was similar to that of the atheroprotective upstream. McCann et al. (2005) reported
the sensitivity of endothelial cells to even small variations in shear stress that can
occur in the parallel plate flow chambers typically employed in cellular studies.

Arterial flow is highly complex, involving pulsatile flow within curved, branching,
elastic, tapered tubes. Flow is typically laminar, although other flow regimes can be
induced by pathological vessel geometries and enhanced by the unsteady forcing. Up
to eight harmonics of the primary waveform frequency are important to characterize
the forcing (Ku 1997), and non-Newtonian effects can be significant in the small
arteries and regions of low shear (Elad & Einav 2003).

Curvature in the vasculature is ubiquitous and can be dramatic in some arteries,
e.g. the ∼180◦ aortic arch. Steady flow in curved tubes and channels was analysed
by Dean (1928). His analysis of the centrifugal instability in a curved channel flow
established conditions under which viscosity no longer sufficiently damps the inviscid
instability and secondary flows develop. Dean’s analysis was extended to zero-mean,
sinusoidally oscillating flow in a curved pipe by Lyne (1970). Lyne assumed a thin
Stokes layer and predicted a four-vortex secondary-flow system, where the counter-
rotating vortices in the inviscid core rotated in the opposite sense to that of the
steady flow Dean vortices. A second pair of counter-rotating vortices in the Stokes
layer rotated in the conventional sense. Womersley (1955) discussed the importance
of the ratio of Stokes layer thickness to the tube radius in his development of the
analytical solution of pulsatile flow in a straight, rigid vessel. High Womersley number
(defined as α =R

√
ω/ν) flows are inertially dominated and consequently have thin

Stokes layers. The unsteady pipe flow problem was originally solved by Sexl and α2

is sometimes referred to as the kinetic Reynolds number (White 2006).
Chandran et al. (1974) incorporated elastic walls into Lyne’s analysis and found that

the secondary flow streamlines were phase dependent. Flows in the Stokes layer and
the inviscid core both changed directions several times, flowing in the same direction
for about half of the cycle and in opposite directions for the other half. Lin & Tarbell
(1980) studied non-zero mean oscillating flow and observed a resonance-like character
between the axial and secondary flows. More recent numerical works on flow in curved
tubes have examined larger curvature ratios (tube radius to radius of curvature, δ/R)
and non-sinusoidal pulsing (Komai & Tanishita 1997). Experimental measurements
of aortic arch models have been performed by several researchers confirming the
predictions of Lyne and have also documented several higher order instability modes
(Chandran 1993; Naruse & Tanishita 1996; Konno, Satoh & Tanishita 1999).

Development of steady flow in a curved tube shows that the flow initially favours
the inner wall due to streamline curvature and then migrates to the outer wall because
of the centrifugal acceleration (Berger, Talbot & Yao 1983; Snyder, Hammersley &
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Olson 1985). Snyder et al. (1985) demonstrated that the development of laminar
flow in a curved pipe is not a sole function of the Dean number, but rather certain
modes exist in which the curvature ratio and Reynolds number are independently
important. Once fully developed, the axial flow profile is roughly linear over the bulk
of the flow cross-section. In pulsatile flow, Talbot & Gong (1983) found that the
axial flow separated from the inner wall during deceleration, and they discovered
the presence of helical structures in the Dean’s vortices. Swanson, Stalp & Donnelly
(1993) looked at flow development in curved pipes experimentally and suggested that
flow becomes fully developed near 165◦ in a 180◦ bend. Komai & Tanishita (1997)
simulated flow around a curved tube for several curvature ratios, Womersley numbers,
and intermittency parameters (ratio of systolic time to the total cardiac period). They
showed the nearly linear nature of the velocity profile at various phases and depicted
the secondary flow structures for the various parameters. More recently, Dwyer et al.
(2001) performed a study of unsteady flows in curved pipes and found that for
Womersley numbers greater than about 15, the flow exhibits an inviscid-like nature,
driven by the unsteady pressure field. They also found that during deceleration the
flow near the inner wall is significantly retarded.

Unlike the studies of flow in curved vessels that typically focus on atherogenesis,
the study of stenotic flows is concerned with the effect of developed lesions on
the local hemodynamic environment. The local hemodynamics may impact plaque
rupture, thrombus formation, and general vessel health distal to the stenosis (Nerem
1992). Stenoses are characterized by the degree of occlusion, typically in percent area
compared with the unoccluded vessel. Stenoses with area reduction greater than 75 %
are considered clinically significant, as they are at high risk of thrombus formation,
rupture and ischemia.

Seminal work in the 1980s by Giddens using in vitro models characterized the
mean flow field and frequency content as a function of Reynolds number in both
steady and pulsatile flows (see Khalifa & Giddens 1981; Ahmed & Giddens 1983,
1984) in straight rigid vessels. The 75 % stenosis under steady flow or sinusoidal
forcing investigated by Giddens has become a canonical stenotic flow. The mean and
fluctuating flow field is well characterized and consequently this geometry has been
used by many researchers as a baseline (Ojha et al. 1989; Siouffi, Deplano & Pelissier
1998; Cao & Rittgers 1998; Deplano & Siouffi 1999; Stroud, Berger & Saloner 2000;
Long et al. 2001; Peterson & Plesniak 2003; Sherwin & Blackburn 2005; Varghese,
Frankel & Fischer 2007 b).

Advanced mesh generation schemes and powerful computers have resulted in
a larger number of computational stenotic flow studies. High-level numerical
experiments provide access to several quantities that are difficult to measure
experimentally, such as time-resolved wall shear stress (WSS) and pressure
distributions in realistic geometries. Hyun, Kleinstreuer & Archie Jr. 2000 examined
axisymmetric and asymmetric expansions subjected to a physiologically relevant
waveform. They mapped wall shear stress gradients and introduced a parameter, the
wall shear stress angle deviation, that encompasses regions known to be atherogenic
(i.e. low WSS) and those that are thrombogenic (i.e. high WSS). Stroud et al. (2000)
determined that several factors such as surface irregularity, stenosis aspect ratio and
the pulsatile waveform can play a significant role in stenotic flow physics. Long et al.
(2001) demonstrated that asymmetric stenoses have a shorter zone of influence than
axisymmetric stenoses, a fact also reported by Varghese et al. (2007 b).

Mittal, Simmons & Udaykumar (2001) and Mittal, Simmons & Najjar (2003)
used large eddy simulations (LES) to investigate turbulence production in stenotic
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flows. Their study was performed in a channel with semicircular stenosis models and
found that above a Reynolds number of approximately 1000 the flow transitions to
turbulence. Sherwin & Blackburn (2005) investigated the three-dimensional instability
mechanism of an axisymmetric stenotic flow to broad-spectrum velocity perturbations.
They found that the starting vortex ring (at high enough Reynolds number) tilts
and rapidly breaks down through its interaction with the wall. They predicted that
transition can occur within a few diameters of the stenosis, in agreement with
observation. Furthermore, Sherwin and Blackburn reported single-harmonic forcing
to be more unstable than more complex input signals. Blackburn & Sherwin (2007)
extended this work and found that a Widnall-type wavy vortex core instability
mechanism can dominate at sufficiently high Reynolds numbers and low reduced
velocities, whereas the vortex-tilting mode dominates at higher reduced velocities. They
also observed that a convective shear layer instability can act as a destabilizing agent
for the period-doubling vortex tilting instability at low Womersley number. Varghese
et al. (2007a , b) demonstrated that a geometric perturbation (a slight displacement
of the stenosis axis with respect to the tube axis, or eccentricity) is sufficient to
induce turbulent transition in both steady and pulsatile flow where none had been
observed in the axisymmetric case. Transition is apparently initiated by a similar
vortex ring/wall interaction reported by Sherwin and Blackburn. In the former, the
geometric anomaly causes the position of the starting vortex to move towards the
near wall via mutual induction, whereas for the latter it is the velocity perturbation
that biases the position of the vortex ring.

Varghese (2006) used DNS data for symmetric and eccentric stenotic flows as a
baseline for analysing and comparing the performance of various turbulence models.
The turbulence models included standard two-equation models (e.g. k–ε and k–ω)
as well as more advanced Reynolds stress models. His results showed that all of
these standard turbulence models performed poorly, each predicting an immediate
transition to turbulence at the stenosis.

In vivo, the skewed axial velocity profile is observed downstream of a bifurcation,
while secondary flows are induced by curvature. In tandem, these two disturbances are
characteristic of flow downstream of a bend. The focus of this study was to determine
the impact of inlet conditions on the flow development distal to an idealized stenosis
under physiological forcing. Experimentally obtained data were used to understand
the influence of the axial velocity profile and secondary flows on the stenotic flow,
and to establish the consequent implications on numerical modelling.

2. Experimental setup
A schematic diagram of the two experimental configurations used in these

experiments is shown in figure 1. The flow loop in both configurations is driven
by an Ismatec programmable gear pump with a magnetically coupled Micropump
A-mount cavity style pump head. The flow loops can be operated in either a steady or
pulsatile flow mode. The steady and pulsatile flow paths are differentiated in figure 1
by dashed and solid arrows, respectively. In pulsatile mode, the mode used in all
experiments discussed herein, the flow is driven directly by the pump. The flow loop
in figure 7(a) is used for the baseline and linear insert cases, while the flow loop
in figure 7(b) is used in the bend case. The coordinate systems shown in the two
subfigures indicate that x is the streamwise coordinate in the test section (downstream
of the stenosis), while y and z are the radial coordinates. The locations of the two
coordinate systems are not meant to imply the origin. In all stenotic flow experiments
the origin is at the throat of the stenosis along the centreline of the tube.
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Figure 1. Schematic diagram of experimental setups; (a) baseline and linear insert
and (b) bend.

A 1.15 m long by 12.6 mm ID by 1.2 mm thick glass tube (L/D ∼ 96) upstream
of the test section provides adequate development length to produce fully developed
flow. Flow in the conditioning section is laminar with maximum Reynolds numbers
ranging from 500 to 1500. In this range, the required steady flow entrance length
is Le/D = 0.06 ReV̄ , where Le is the entrance length and ReV̄ is the Reynolds
number based on average velocity and tube diameter. At low to moderate Womersley
number (α < 12.5), the development length of pulsatile flow obeys the same Reynolds
number relation as in steady flow, except that the Reynolds number is based on
maximum centreline velocity for the unsteady flow Ku (1997). The entrance lengths
corresponding to these Reynolds numbers range from 30 to 90 tube diameters. The
fluid exits the test section into another constant-head tank to ensure a constant exit
pressure. The exit tank has an overflow chamber that drains into the main reservoir,
completing the flow loop. Alignment brackets in the index matching enclosure support
the stenosis model, as well as the upstream and downstream tubing sections. The
brackets minimize misalignment, which would result in asymmetry of the jet trajectory.

Glass was selected for the tubing material because of its optical clarity and
tight dimensional tolerances from the manufacturer. Arterial vessels are naturally
compliant, but this elasticity has been shown to have a secondary effect on the flow
features Ku (1997). Furthermore, the arteries lose their compliance with age, with the
elderly population experiencing a marked decrease in vessel distensibility. Bortolotto
et al. (1999) found that by age 74, men with normal blood pressure have lost 43 % of
their carotid artery distensibility in comparison with 35-year-old subjects. Because the
elderly demographic is significantly impacted by cardiovascular disease, the rigid-tube
model is justifiable as clinically relevant.

Following Ahmed & Giddens (1983), the stenosis geometry is generated by revolving
an offset cosine curve about the symmetry axis (x-axis). The equations defining the
stenosis geometry, from Varghese et al. (2007a), are

S(x) =
D

2

[
1 − so

(
1 + cos

(
2π(x − xo)

L

))]
, (2.1)

y = S(x) cos θ, (2.2)

z = S(x) sin θ, (2.3)
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where D is the unoccluded tube diameter, so is fraction of unoccluded area, L is the
stenosis length, and xo is the distance from the inception point of the stenosis to the
throat. The ranges for x and θ are 0 � x � L and 0 � θ < π, respectively. The origin of
coordinates for studies described herein coincide with xo in (2.1). The stenosis model
occludes 75 % of the tube area (corresponding to a 50 % reduction in diameter).
The model was constructed using stereolithography. The stenosis was built along the
x-axis. The model was designed such that the flow conditioning and test section tubes
slide into either side of the stenosis and seal with an o-ring. The raw stenosis part
was lightly sanded to reduce the ridges inherently produced in lithography without
significantly changing the shape. The sanded model was sealed with urethane to
prevent water absorption, which produced a smooth finish. Upon insertion into the
flow loop the tube/stenosis interface was sealed using silicone caulk.

2.1. Waveform generation

The physiological waveform used in this study is that which is measured in the human
common carotid artery. The predisposition of the carotid bifurcation to atherogenesis
has prompted several researchers to document the arterial geometry and volume flow
waveform in the common carotid artery (see Bharadvaj, Mabon & Giddens 1982;
Holdsworth et al. 1999; Hyun et al. 2000; Stroud et al. 2002). The waveform employed
in this study is based upon pulsed-Doppler ultrasound measurements by Holdsworth
et al. (1999) of the common carotid artery of 17 normal, healthy human subjects
with no known atherosclerotic lesions. They constructed an archetypal waveform
based upon ‘feature points’ identified in the measured waveforms. Their prototypical
waveform (figure 11 in their paper) was digitized using Engauge digitizing software
and interpolated to a uniform time axis using a cubic spline fit. The mean, minimum
and maximum Reynolds numbers were computed from the respective volumetric flow
rates provided in their table 4 for the prototypical waveform. The Reynolds numbers
were calculated assuming the viscosity and density of blood to be 3.5 cP and 1060 kg
m−3, respectively, and the diameter of the common carotid artery to be 6.4 mm. This
is the diameter measured by Holdsworth et al. (1999) and is in agreement with prior
measurements. They measured the average period to be 0.917 s, although they noted
a fair degree of variability from subject to subject. This period is similar to that
reported by Bharadvaj et al. (1982) and approximately 30 % larger than the value
used by Stroud et al. (2002). The Womersley and Reynolds numbers computed from
Holdsworth’s data are presented in table 1. Their in vivo waveform was scaled to
the present experiment by matching the Reynolds and Womersley numbers. Using
the density and viscosity of water (1000 kg m−3 and 1.0 cP, respectively), matching
Womersley numbers required the period be scaled up to 11.55 s. The flow rate was
scaled to match the Reynolds number. Included in table 1 are the reduced velocity
and peak-to-mean flow ratios defined by Sherwin & Blackburn with values of 26.3
and 3.9, respectively. The present values are considerably greater than the ranges
2.5 � Ured � 7.5 and Upm =1.75 considered by Sherwin & Blackburn.

The quality of the pump output was found to depend on the smoothness of the
input voltage. Mitigation of Gibb’s type ringing at the peaks was accomplished
by decomposing Holdsworth’s waveform into Fourier modes and reconstructing a
version of the original waveform using a small number of modes. A 10-mode Fourier
reconstruction was found to capture the essence of the waveform while eliminating the
higher frequencies, which caused oscillations in the pump. The Fourier coefficients of
the scaled-up waveform are presented in table 2. The Fourier-reconstructed waveform
is shown in figure 2.
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Mean velocity, ū = 4Qavg/(πD2) 2.87 cm s−1

Mean Reynolds number, Reavg = 4Qavg/(πνD) 364
Minimum Reynolds number, 4Remin = Qmin/(πνD) 24
Maximum Reynolds number, 4Remax = Qmax/(πνD) 1424
Womersley number, α = D/2

√
ω/ν 4.6

Reduced velocity, Ured = ūT /D 26.3
Peak-to-mean velocity ratio, Remax/Reavg 3.9

Table 1. Dimensionless parameters governing the bulk flow.

1.00000 + 0.00000i
0.10654 − 0.24469i

−0.16112 − 0.28013i
−0.24915 + 0.11904i
−0.08746 + 0.11309i

0.09169 + 0.19347i
0.11648 − 0.04419i
0.00544 − 0.04634i

−0.01204 − 0.02023i
−0.01768 + 0.00698i

0.00362 + 0.01425i

Table 2. Fourier coefficients used to construct the scaled-up smooth pump input waveform
normalized by Qavg = 3.57943ml s−1.

Figure 3 compares the experimentally measured velocity profile time-trace to the
theoretical Womersley solution for the Fourier-reconstructed waveform in the fully
developed upstream tube section. The axes in the two subfigures correspond to non-
dimensional radial position z/D, time t/T and mean streamwise velocity u/uc (see
§ 2.2.3 for the definition of uc). Thus, figure 3 represents the temporal evolution
of the velocity profile at one axial position in the upstream flow development
region. The input waveform is shown in an inset in figure 3(a), and the three
prominent pulses of the waveform are labelled ‘primary’, ‘secondary’ and ‘tertiary’ in
figure 3(b). Reversed flow near the walls occurs immediately after the deceleration
phase of the primary pulse and in the valley between the secondary and tertiary
pulses. Qualitatively, the two subfigures are in very good agreement, suggesting
that the flow is fully developed and reasonably approximates the assumptions of
the Womersley solution. Direct comparison of the experimental profiles with the
analytical solution is shown in figure 4. The comparison shows good agreement
between experiment and theory. The largest deviation occurs near the peak of
the cycle, which was found to be the most difficult portion of the waveform to
match. There is a slight phase lag between the experimental data and the analytical
solution because of the phase lag between the pressure and velocity waveforms in
Womersley flow. Further comparison between experiment and theory is provided
in figure 5(a), which shows good agreement between experimental and theoretical
velocity profiles at a few distinct phases. Figure 5(b) shows the streamwise root mean
square (r.m.s.) velocity fluctuations at the same phases. The r.m.s. velocity fluctuation
is approximately 2 % for the majority of the cycle, the exception being during the
maximum velocity (t/T = 0.167 on the plot) when it rises to 4%. A distinct two-
peak shape in the r.m.s. velocity profile observed by Beratlis et al. (2005) was not
observed and the measured velocity fluctuations appear to be due to the measurement
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Holdsworth et al. (1999) and a reconstruction of that waveform using the first 10 Fourier
coefficients.
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Figure 3. Fully developed pulsatile pipe flow velocity profile time-trace;
(a) experimental data, (b) Womersley solution.

system and background noise only (similar magnitudes were observed in steady flow
experiments).

2.2. Experimental techniques

Data were collected using laser Doppler velocimetry (LDV) and particle image
velocimetry (PIV). A brief summary of the experimental techniques and estimates of
experimental uncertainties are given below.

2.2.1. LDV system details

LDV is a minimally invasive, point velocity measurement technique capable of
yielding up to three unambiguous velocity components with high temporal and
spatial resolution (Adrian 1996). A commercial one-component LDV system (Dantec
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Figure 5. Fully developed pulsatile pipe flow velocity profile at various phases; symbols
are experimental data, lines are theoretical predictions; (a) mean velocity, (b) r.m.s. velocity
fluctuations.

Dynamics FlowLite) operating in burst mode was used in this study. A helium–neon
laser produced a 632.8 nm beam that was split by a Bragg cell. The Bragg cell shifted
the frequency of the beams by νS = 40 MHz with respect to one another. The LDV
head lens had a focal length of f =160 mm and the beams were separated by 38 mm
at the lens exit pupil. The manufacturer-specified divergence angle of the beams was
2κo =13.54◦ in air. As the working fluid was water, refraction caused the actual beam
divergence angle at the measurement location to be 10.17◦. The beam diameter was
nominally 1.35 mm and reduced down to ≈0.1 mm at its focal point. The beam waist
value is only an approximation due to the effect of the index-matching enclosure on
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the true focal length. The spatial resolutions were approximately 0.1 mm by 0.1 mm
by 1.0 mm.

The fringe spacing in the measurement volume was 2.683 μm. The fringe spacing did
not change as a result of the change in index of refraction as both the beam divergence
angle and the beam wavelength change by the same factor. Thus, the unadjusted
values of κ and λ may be used to compute the fringe spacing. From the Bragg
cell frequency, the anticipated fringe velocity can be computed, uf =107.32 m s−1

(Adrian 1996). This is the velocity that should be measured for a particle at rest
within the measurement volume. This value was confirmed by placing a 3 μm hair
in the measurement volume and recording the velocity. The measured and computed
fringe velocities were identical to within four significant digits.

All signal processing was performed using the Dantec Dynamics BSA Flow
Processing software. Down-mixing of the Bragg cell frequency (conversion of the
typical 40 MHz frequency to lower frequencies) was performed automatically to
facilitate the low-velocity measurements in these experiments. Additional flow seeding
beyond the naturally occurring water particulates was not required, but 18 μm
diameter silvered hollow glass spheres were added to increase the data rate. The
sample rate was approximately 200–1000 Hz, with the highest values occurring near
the tube centreline and the lower near the tube walls. Data were collected for 100
cycles, leading to an average of approximately 350 000 data points per data set. For
averaging, the data were binned into 720 bins.

The probe was attached to a two-direction manual traverse consisting of two lead
screws, each controlling one coordinate direction. Vernier calipers attached to the
traverse provided positioning data accurate to within ± 0.05 mm.

The uncertainty in the LDV measurements was approximated by obtaining velocity
profiles along the jet centreline in two orthogonal directions under steady Poiseuille
flow conditions and comparing the measured values to the theoretical parabolic profile.
Velocity profiles were obtained in the y and z planes. Two profiles were obtained
in each of the two directions. The mass flow rate was measured using the bucket
and stopwatch method to be ṁ= 10.65 ± 0.024 g s−1. The magnitude of umax was
17.06 ± 0.143 cm s−1. The water temperature during the experiment was a constant
23.8◦C and the corresponding density of 0.9982 g cm−3 was considered constant in
the uncertainty calculation. The Reynolds number of the flow was ReV̄ =1075. Far
from the walls the error was approximately ±1 % and increased to ±5 % in the
vicinity of the tube walls.

2.2.2. PIV system details

Over the past decade PIV has become a standard tool of experimental
fluid mechanicians (Raffel, Willert & Kompenhans 1998). Traditional PIV is an
instantaneous planar velocity measurement technique adapted from speckle metrology
in solid mechanics. PIV is conceptually simple; the velocities of small tracer particles
within a specified plane in the fluid are determined by measuring their displacement
over a short time.

All PIV experiments described herein were performed with a commercial TSI
PIV system. The system consisted of a 2000 × 2000 pixel PowerView 4MP camera,
a dual 50 mJ pulse−1 NewWave Gemini Nd:YAG laser, a TSI synchronizer and a
dual Pentium III data acquisition computer. TSI’s Insight 3G software was used to
correlate the images. The images were correlated using a multipass FFT scheme with
continuous window shifting, a Gaussian subpixel interpolation scheme and a central
difference algorithm for velocity computation. The interrogation regions ranged from
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32 × 32 to 64 × 64 pixels and 	t was typically between 250 and 800 μs. Each pixel
corresponded to 15 μm in the image plane resulting in a spatial resolution on the
order of 0.25mm2 for the twice oversampled data (i.e. the interrogation windows
were overlapped by 50 %). The pixel size in the image plane was determined by
measuring the outside diameter of the tube with calipers and combining this with the
size (in pixels) of the image of the tube. This measurement was performed 10 times
and the results were averaged. The PIV system was phase-locked to the pump via a
custom-designed pump-controller LabView VI. One hundred image pairs were used
to compute the average vector fields.

Data from the PIV uncertainty experiments were obtained in the x–z plane.
The Reynolds number based on average velocity was 705 and the mass flow
rate was 6.98 ± 0.02 g s−1 for these experiments. This corresponds to average and
centreline velocities of 5.58 ± 0.05 cm s−1 and 11.17 ± 0.09 cm s−1, respectively. The
average velocity field was obtained by averaging 2000 instantaneous PIV realizations
interrogated using a multi-pass scheme. The data were first computed using a 64 × 64
pixel interrogation region followed by pass validation. The displacement results were
used to shift the centre of the interrogation region in the second pass, which used a
32 × 32 pixel region. The final vector field was validated using range and standard
deviation statistics. No interpolation was used on the final vectors. Due to the removal
of spurious vectors in the validation scheme, each vector in the mean velocity field
represented an average of 1000–1400 instantaneous realizations.

Over the majority of the profile the error in the mean velocity is less than ±3 %.
Near the wall the error increases to approximately ±5 %. In the very near wall region
the relative error becomes very large (>40 %), due in part to distortion from the
cylinder.

2.2.3. Normalization schemes

Two averaging schemes are employed in this study; these are average centreline
normalization and inlet velocity waveform (IWF) normalization. The average
centreline velocity normalization divides the velocity by that at the centreline of
the tube upstream of the stenosis, uc, where

uc =
1

T

∫ T

0

ucl(t) dt. (2.4)

The numerical value of uc for the applied waveform is 6.1 cm s−1. IWF normalization
consists of normalizing the velocity at each phase of the waveform by the
corresponding upstream centreline velocity at that phase. This is symbolized by
uiwf ;

uiwf,k =

(
1

Nk

Nk∑
n=1

un

)
k(

1

Mk

Mk∑
m=1

uc,m

)
k

, (2.5)

where the subscript k denotes the phase (bin) being averaged, Nk and Mk correspond
to the number of velocity measurements in that particular bin, un is the nth
measured velocity at a given phase bin, and uc,m is the mth measured velocity at
the corresponding phase of the upstream flow.
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Figure 6. Velocity profile evolution between 2D and 8D downstream of the stenosis. Contours of r.m.s. velocity fluctuations overlaid.
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3. Baseline flow results
Ojha et al. (1989) identified four flow-regime zones downstream of an idealized

stenotic flow. The four zones are an initial stable jet in the near field (z/D < 3),
a transition region (3.5 � z/D < 4.5), a turbulent region (4.5 � z/D < 7.5), and
a relaminarization region (z/D � 7.5). Mean velocity profiles at each position
downstream of the stenosis from x/D =2 to x/D = 8, presented in figure 6,
qualitatively agree with these regimes. At x/D = 2 the stenotic jet is well defined
and the r.m.s. velocity fluctuations (the contour overlaid on the velocity profiles) are
small, except in the shear layer. The jet associated with the primary waveform peak
is blunt and plug-like, as expected, because of the strong acceleration through the
stenosis.

At x/D =3 the sharply defined stenotic jet resulting from the primary waveform
peak has eroded some and the r.m.s. velocity fluctuations along the tube centreline
have increased (the fluctuating velocity in the shear layer has decreased a bit). This
is the region between the stable jet of zone I and the transition region of zone II. At
x/D =4 to 6 the magnitude of the primary stenotic jet (i.e. the jet produced by the
primary pulse) has decreased in magnitude and spread out radially. The spreading of
the mean jet is in part due to unsteadiness in the jet location as shown by the PIV
data in a subsequent section. In this region the r.m.s. velocity associated with the
tertiary pulse has increased as that jet breaks down. By 8 diameters downstream of
the stenosis throat the velocity profile character resembles the analytical solution. The
r.m.s. velocity fluctuations are small and the flow has entered the relaminarization
stage.

The phase-averaged centreline velocity as a function of distance downstream and
time is presented in figure 7. The axes correspond to the axial distance downstream
of the stenosis, x/D, from 2 to 20, and phase of the cardiac cycle, t/T . The contours
in figure 7(a) represent streamwise velocity magnitude and those for figure 7(b) are
the r.m.s. velocity fluctuations. Superimposed on these plots (at x/D = 15) is the
input waveform for reference. Note the time axis is increasing from top to bottom.
In the near field the stenotic jet discussed in reference to figure 6 is indicated by
dark contours. The velocity drops precipitously downstream of 6D due to stenotic jet
breakdown. Flow redevelopment occurs throughout the remainder of the test section.
As labelled on the figure, a temporal shift in the peak velocity location (with respect
to the input waveform) occurs between 2D and 6D for each peak. As discussed later,
the peak shift is a manifestation of the jet formed at the throat and the associated
vortex ring at the front of the jet. The r.m.s. velocity fluctuations (figure 7b) reach a
maximum between 3D and 5D for the primary peak, while the largest fluctuations in
the secondary and tertiary peaks occur between 5D and 7D. These are the regions in
which the velocity drops rapidly, a manifestation of the stenotic jet and vortex ring
breakdown.

A direct comparison of centreline velocity at select spatial locations is presented
in figure 8. The velocity waveform upstream of the stenosis is represented by square
symbols. The maximum velocity at x/D = 2 is nearly three times that of the upstream
flow. By 6D the velocity is not appreciably larger than the upstream velocity, but
there are obvious spikes at the primary and tertiary peak phases. Furthermore, it is
obvious that the primary and tertiary peaks are propagating downstream (particularly
the tertiary peak). The relaxation portion of the waveform t/T > 0.8 is characterized
by markedly higher velocities up to ∼ 7D. The velocity profiles at 8D and 10D

are nearly identical with lower magnitudes than the upstream velocity. At 15D the
velocity magnitude is slowly approaching the fully developed condition.
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Figure 7. Contour plot of centreline velocity versus time; baseline case (a) velocity
magnitude, (b) r.m.s. velocity fluctuations.

PIV data in figure 9 show the propagation of the coherent tertiary vortex ring up to
x/D = 4. The vortex core is identified using the two-dimensional Q-criterion developed
by Weiss (1991). The line contour represents a numerical value of Q = −200. These
data are instantaneous velocity fields obtained during different pulse cycles and do
not represent the propagation of a single-vortex ring. The low frame rate of the
camera precluded time-resolved PIV results. Consequently, direct measurement of
the vortex ring velocity was not possible. At t/T =0.54, a vortex ring is located at
x/D � 2.1, as marked by an arrow on the abscissa. This correlates well with the phase
and location of the ‘peak shift’ observed in figure 7. The leading vortex ring is located
at x/D � 2.6 at t/T =0.55, x/D � 3.2 and t/T = 0.56 and x/D � 4.9 at t/T =0.57.
Vortices upstream of the leading vortex are likely to produce other rings by the shear
layer instability.
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The slope of the lines connecting the leading edge of the primary and tertiary pulses
(labelled as ‘peak shifts’ in the x–t space of figure 7) indicate that the primary vortex
ring (and subsequent stenotic jet) propagates at a higher velocity than the tertiary ring.
The slope of each line is nearly constant, consistent with the observations of Sherwin
& Blackburn (2005) that vortex rings in pulsatile flow propagate at nearly constant
velocity despite large variations in the bulk-flow velocity. The arrival of the stenotic
jet/vortex ring results in a rapid increase in velocity at a specified centreline position.
The first derivative, (uiwf,k+1 − uiwf,k)/δt , found in figure 10, can be used to locate
the phase which the pulse arrives at a particular measurement location. The rapid
increase in velocity is represented by a clear spike in the acceleration waveform. The
spikes associated with the primary and tertiary pulse at measurement locations from
x/D =2 to 6 are expanded in the insets. The approximate propagation velocity of
the primary and tertiary peaks, obtained from the time difference between successive
spikes, is 10.9 and 7.3 cm s−1, respectively.

Despite the lack of temporal resolution in the PIV data, it is nonetheless possible
to estimate the ratio of primary to tertiary vortex ring velocity by recognizing that
ring velocity is proportional to Γ/R, where Γ is the circulation and R is its radius.
The average circulation of the primary vortex ring at inception was computed by
performing the line integral along a rectangle encompassing the vortex centre. The
average primary and tertiary vortex ring circulations computed from this method are
∼ 4.5 and ∼ 2.8 cm−2 s−1, respectively. The standard deviation of both circulation
measurements is approximately 20 %. The ring Reynolds numbers, defined as Γ/ν,
are 450 and 280, respectively. This Reynolds number range is well within the laminar
vortex ring regime. The average ring radius for the primary and tertiary ring is 0.41D

and 0.43D, respectively. The standard deviations are 5 % and 3%, respectively. The
ring radius was computed by measuring the distance between the centres of the vortex
pairs (the cross-section of the ring) in each instantaneous image and dividing by two.
Thus, tilted vortex rings have a larger radius. It is assumed that the PIV image bisects
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the ring through the centre point, which may not be the case for each individual ring.
The ratio of the velocities computed from (Γ/R)primary/(Γ/R)tertiary is 1.68. The ratio
of velocities computed from the mean centreline LDV data (figure 10) is 1.50. These
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Primary pulse

Circulation, Γ/(ucD) 0.58
Radius, R/D 0.41
Reynolds number, Γ/ν 450

Tertiary pulse

Circulation, Γ/(ucD) 0.36
Radius, R/D 0.43
Reynolds number, Γ/ν 280

Table 3. Vortex ring parameters for the baseline flow case.

independent estimates of propagation speed are in reasonable agreement, particularly
considering the large uncertainty in these calculations. This supports the assertion that
the peak shift observed in the LDV data is the signature of vortex ring propagation.
These results are summarized in table 3.

Blackburn & Sherwin (2007), in an extension to their previous stenotic flow stability
studies, used a Floquet analysis to determine two-vortex ring instability mechanisms.
At reduced velocities less than 2 they found a wavy core instability mode, similar to
the Widnall instability identified for free vortex rings. At higher reduced velocities
they had previously found (Sherwin & Blackburn 2005) a tilting mechanism. In the
present study, Ured � 27, which is well above the threshold where the Widnall-type
instability is dominant, so the instability would be expected to be of the vortex-tilting
type in preference to the Widnall type. Using a combination of DNS results and
the Floquet analysis, Blackburn & Sherwin developed a neutral stability curve for
both instability modes and found that for Ured > 5 the critical Reynolds number
increases nearly linearly. By digitizing the curve in their figure 23 and fitting a
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line to the data for Ured > 6 and extrapolating that line to the current reduced
velocity yields a critical Reynolds number of �1180 (assuming that the linear trend
persists as the reduced velocity increases). The Reynolds number in the present
study (based on average velocity) is greater than this critical value only in the
range 0.15 � t/T � 0.20, and the Reynolds number based on uc is only 384. We
also have multiple harmonics in the waveform, which Sherwin & Blackburn (2005)
found to have a stabilizing effect. Thus, it is questionable whether the vortex-tilting
instability plays an active role in the breakdown mechanism in the present study.
Blackburn & Sherwin (2007) found the convective shear layer instability to play a
very prominent role for high reduced velocities, in that it acts as a destabilizing
mechanism for the vortex-tilting instability. For Ured = 10 they found the convective
instability to be large enough that it obscured the period-doubling instability in their
DNS results. By superposing a small amplitude harmonic streamwise perturbation
on the mean flow, Blackburn & Sherwin found that the convective shear layer
instability sensitivity increased with increasing reduced velocity. As the reduced
velocity increased, however, so did the Reynolds number, so it cannot be clearly
determined whether the increased sensitivity results from the increase in reduced
velocity, the increase in Reynolds number, or some combination thereof. In the present
study, the reduced velocity (Ured = 27) is considerably higher than any case considered
by Blackburn & Sherwin, but the Reynolds number is generally lower. Consequently,
it is difficult to infer whether the convective shear layer instability plays a similar role
in the present experiments. Furthermore, there is a relatively high level of noise in
the experiment (in comparison with the noise levels in numerical simulations) and
geometric imperfections that can also break symmetry. Therefore, while it is very likely
that the convective shear layer instability plays a role, and may induce the vortex-
tilting instability mechanism, despite the relatively low Reynolds number, the degree
to which these mechanisms influence the stenotic jet/vortex ring breakdown cannot be
determined.

3.1. Flow redevelopment

Figure 11 is a surface plot of the IWF normalized centreline velocity versus distance
downstream and time. If the fully developed upstream waveform were recovered
sufficiently far downstream of the stenosis, the IWF normalized velocity would be
equal to 1 at all phases. However, the deviations of the far downstream centreline
waveform from the input waveform are clear. In particular, a ‘ridge’ originating from
the inception of the primary peak (labelled on the figure) is observed to advect
through the entire domain. By 20D, the ridge initiated during systole (i.e. the primary
peak) and a ‘deficit’ at t/T = 0.45 (also labelled on the figure) are the only significant
deviations from the input waveform. The deficit does not advect downstream, but
rather remains at the same phase, corresponding to the local minimum between the
secondary and tertiary peaks of the input wave. A propagating ridge originating
from the tertiary peak is also evident, but it is more disperse and dies out by
approximately 14D. As pointed out by Brasseur (1979), more energetic vortex rings
are less impacted by the presence of the tube wall, which explains why the primary
vortex ring propagates beyond the tertiary ring.

Brasseur developed a kinematic theory of vortex motion in a tube by superposing
the velocity field of a free-vortex ring and the velocity imposed by the wall on the
vortex ring. The theory is analogous to the two-dimensional case of a vortex pair
propagating in a channel. The vortex pair propagates via mutual induction, while
image vortices, used to enforce the no-penetration boundary condition at the wall, act
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to decelerate the pair. Therefore, Brasseur’s statement is essentially that for a given
vortex ring radius, the ring with greater circulation will advect faster, and thus be
less influenced by the wall. The propagation speed of the disturbance that produces
the ridge decreases slightly with distance downstream, although the change is small.
It is unlikely that a coherent vortex ring can propagate so far downstream, but
some disturbance does continue to propagate. Khalifa & Giddens (1981) reported
a ‘starting structure’ as far downstream as x/D = 20 for a 50 % occlusion and to
3.7 <x/D < 7.7 for a 75 % stenosis. Their reduced velocity was 18, corresponding to
a critical Reynolds number of 850 (extrapolated from Blackburn & Sherwin 2007).
Their Reynolds number was 950, so the vortex tilting instability should have been
present.

Examples of the fluctuating velocity time-traces are presented in figure 12 from
x/D =2 to 10. The driving mean velocity and acceleration waveforms are included
at the bottom of the figure. Vertical lines are extended from the local maxima and
minima of the forcing velocity (solid lines) and acceleration (dashed lines) waveforms
throughout the figure for reference. Oscillations are initiated just after the primary
peak of the acceleration waveform, prior to deceleration in the range 2 � x/D � 6.
At 2D, the oscillations are smooth and their frequency varies with bulk flow speed.
At the peak velocity of the primary pulse the frequency is highest and it tapers off
at lower bulk speeds. This is suggestive of shear layer roll-up. Multiple vortices were
observed in the PIV data (e.g. figure 9), in agreement with the velocity time-traces. The
arrival of the stenotic jet and associated vortex ring is clearly observed up to x/D =6
by the shift in time of the ‘burst’ in the time-traces. Note that while a coherent ring
was observed as far downstream as 4D in the PIV data (and shear layer vortices
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were observed up to at least 5D), beyond those locations the bulk stenotic jet may
no longer have an associated vortex ring.

The oscillations become severe and of higher frequency further downstream
during deceleration of the bulk flow (0.18 � t/T � 0.28). The oscillations are damped
considerably by the time the acceleration corresponding to the secondary pulse
becomes positive. It appears that stabilization of the fluctuations is also tied to
the acceleration waveform, as damping seems to begin after the derivative of the
acceleration changes sign. The velocity fluctuations associated with the tertiary pulse
are minor compared to those observed for the primary one, potentially due to the lower
Reynolds number. At this phase (t/T > 0.5) the velocity time-traces do not display
the erratic behaviour exhibited during the primary pulse. The high-frequency events,
particularly during the primary pulse imply turbulent breakdown of the stenotic jet
(and potentially the associated vortex ring). Further downstream (7 � x/D � 10) noise
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from the earlier breakdown of the stenotic jet is still observed during the primary
pulse phases. For all locations, the flow is relatively steady between the secondary
and tertiary peaks.

4. Disturbances
This section presents the results from the two disturbed inlet cases investigated;

skewed inlet profile and flow downstream of a bend. The flow field downstream
of a bend has a skewed mean flow profile (peak velocity is biased away from the
centreline), in addition to a secondary flow component (Dean’s vortices). Details
of how each disturbance was produced in the experiment precedes the results and
discussion.

4.1. Linear shear velocity profile disturbance

4.1.1. Insert design

In an effort to decouple the effects of the mean flow profile from the secondary flow
on the stenotic flow development, a shear flow-inducing insert is introduced, with the
goal of skewing the location of maximum velocity away from the centreline.

The velocity gradient is produced by imposing a spatially varying resistance on the
inlet flow via a porous insert. A schematic diagram of the porous insert is shown
in figure 13. It consists of two layers. The first is a short cylinder of Porex plastic
with porosity of approximately 40%. The Porex plastic is quite rigid and is press
fitted into a short 2D long piece of glass tubing. The Porex cylinder prevents the less
rigid second layer from moving downstream during pulsation. The second layer is
formed from standard packing foam for computer RAM. The foam is in the shape
of an oblique cylinder, i.e. a cylinder that has been cut by a plane at an angle of 30◦

with respect to the r–θ plane. The flow resistance imposed by the insert varies with
the axial thickness, thus imposing a shear on the fluid downstream of the insert and
producing a skewed velocity profile.

The glass insert is secured to the flow loop by an aluminum coupling, also shown
in figure 13. The glass insert is held in place by a set screw. The upstream flow
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conditioning section and the downstream test section are inserted in opposite ends
and placed flush against the glass insert. O-ring grooves in the aluminum sleeve create
a seal, which is reinforced by silicon placed on the outside of the casing. The linear
insert was positioned 5D upstream of the stenosis.

Figure 14 is a time-trace of the velocity profile 5D downstream of the insert
along the tube centreline (these data were collected without the stenosis in place and
correspond to the location of the stenosis in the experiments). A nearly linear profile
is apparent during the primary pulse, becoming less well defined during the low
Reynolds number portions of the phase. The maximum velocity occurs at y/D � 0.4,
in contrast to y/D = 0 for the baseline case (figure 3). A few selected velocity profiles
are plotted in figure 15(a) to demonstrate their linearity. The data points have been
connected by lines. Figure 15(b) shows the corresponding r.m.s. velocity fluctuations
at each point, which increase with increasing Reynolds number. The normalized r.m.s.
velocity fluctuations for the majority of the cycle are approximately 8 % and increase
to near 30 % at the peak of the cycle. These r.m.s. velocities are considerably larger
than those of the baseline case and are not uniform across the tube cross-section.
The fluctuations are largest near the wall of the lower velocity (y/D < 0) side of
the insert. The inset in figure 15(b) shows the input waveform with vertical lines
corresponding to the phases presented in the figure. Only negligible secondary flow
downstream of the porous insert was measured, on the order of the uncertainty of
the LDV measurements. This is more than an order of magnitude smaller than the
secondary flow induced by the bend presented in § 4.2. Therefore, the effects of the
skewed velocity profile were isolated.

4.1.2. Results

The mean centreline velocity resulting from the linear inlet velocity profile is
compared with the baseline case for x/D � 10 in figure 16. The skewed input profile
forces a more rapid breakdown of the stenotic jet associated with the primary
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Figure 15. Selected mean velocity profiles 5D downstream of the shear-generating insert;
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pulse and also that of the secondary pulse. The tertiary pulse does not decay until
4 < x/D < 5, but after the tertiary pulse, the velocity drops towards the upstream
value rapidly. The r.m.s. velocity magnitude for the skewed profile case is generally
higher around x/D < 6 as a result of the jet breakdown in this region. The peak
r.m.s. velocity for the primary pulse jet occurs between 2D and 3D. The peak r.m.s.
velocity for the tertiary pulse is centred around 4D, as opposed to 6D in the baseline
case. In the baseline case, the r.m.s. velocity at x/D = 2 is observed to be relatively
small. In the skewed inlet profile case, however, the r.m.s. velocity is relatively high
at this location, particularly during the primary pulse. This is the result of the earlier
jet breakdown in the perturbed case.

The centreline velocity time-traces are directly compared with the baseline case in
figure 17. At x = 2D, the centreline velocity profiles are similar in shape, but those for
the skewed case are of lower magnitude. This may result from a slight asymmetry in
the velocity profile caused by the skewed inlet. However, the skewing of the velocity
profile in the near-stenosis region is small, suggesting that the discrepancy may be due
the earlier jet breakdown observed for this case. The peak velocity magnitude for the
two cases are slightly shifted in figure 17 at 2D, as well. This magnitude continues to
drop in the range 3 � x/D � 4. A spike, similar to that in the baseline case is evident
at t/T ∼ 0.15 for the primary pulse and at t/T ∼ 0.60 for the tertiary pulse. The spike
is most obvious at x/D = 5 and 6. By x = 10D there is little distinction between the
velocity profiles for the two cases.

The propagation velocity of the primary and tertiary pulses can be obtained from the
time derivative of the centreline velocity time-trace, as in the baseline case. The primary
and tertiary pulses propagate approximately at 12 and 7 cm s−1, respectively. The
derivatives were noisier in the skewed inlet case, however, so these values are averages.

Figure 18 compares the IWF normalized velocity time-trace at several downstream
locations ranging from x/D = 2 to 18. These data are the same as those presented
in figure 17, but this normalization makes some of the differences between the two
cases more apparent. Recall that for IWF normalization, fully developed flow that
has recovered to the inlet velocity profile is characterized by a horizontal line at
uCL/uiwf = 1 for all phases. At 2D, the baseline and skewed inlet cases are similar,
with the skewed inlet resulting in a slightly lower velocity, as discussed above with
respect to figure 17. The discrepancy is significantly larger by 4D, with the best
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Figure 16. Centreline velocity contour comparison; baseline versus linear velocity profile.

agreement occurring at the primary and tertiary pulse phases. This is expected, as
these are the last phases of the cycle to exhibit a strong stenotic jet. The deficit in
the vicinity of t/T = 0.45 present in the baseline case begins to appear at x/D = 4
and is evident in all subsequent frames. By 6D, the profile for the skewed inlet is
close to uCL/uiwf =1, which indicates that the flow has largely relaxed to the input
waveform. The stenotic jets have broken down and a spike presumably associated
with the vortex ring is the only remaining artifact associated with the primary and
tertiary pulses. At x = 8D, the stenotic jet for the baseline case has broken down and
the similarity between the two cases increases considerably. The agreement between
the two time-traces continues to improve through the remainder of the test section.

Figure 19 highlights the similarities between the two cases at the downstream
measurement locations (14D–18D). The time-traces nearly coincide, including the
location of ridge shown in the baseline case in figure 11. The pulse observed to
propagate throughout the domain in the baseline case is also evident in the skewed
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Figure 17. Direct comparison of centreline velocity in the skewed inlet and baseline cases.

inlet case, although it is slightly broader. Furthermore, it appears to propagate at the
same rate. The difference in the peak locations is on the order of a few hundredths
of a second and is thus within experimental uncertainty.

Average PIV results measured during phases corresponding to the primary pulse
(figure 20) show that a vortex ring is initiated at t/T = 0.12 and propagates
downstream. Streamlines have been used instead of the Q-criteria for identifying
the vortex ring because they better show the jet skewing. Even though the streamlines
are not Galilean-invariant so that the vortex ring core identified in this manner does
not coincide with the true core, they are still useful for illustrating jet trajectory. After
the vortex ring passes, the stenotic jet trajectory tends to be offset towards the upper
portion of the tube. The skewness in the velocity profile results in bending of the jet
as follows: as the jet emanates from the stenosis and the streamlines start to diverge,
it is subject to a radial pressure gradient arising from the streamline curvature. The
strength of the pressure gradient is a function of the radius of curvature and the
local fluid velocity squared, V 2/R. As the velocity profile is non-uniform, the resulting
radial pressure gradient is non-uniform, which results in a bias of the jet trajectory
towards the higher velocity side of the profile. This is clearly observed at t/T =0.15–
0.16. Once the primary pulse strength is reduced, the bias is less apparent and the flow
attains a skewed profile with no discernible jet. The jet does not bend appreciably for
the tertiary pulse, presumably due to the lower velocity and subsequent weaker radial
pressure gradient.

The circulation of the primary vortex ring computed from the instantaneous PIV
data averaged 4.4 cm−2 s−1 in the skewed inlet case, which is close to the average
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Figure 18. Comparison of the IWF normalized centreline velocity for the baseline and linear
insert cases.

circulation of 4.5 cm−2 s−1 in the baseline case. The tertiary vortex ring has an average
circulation of 2.5 cm−2 s−1 in the skewed inlet case, compared to 2.8 cm−2 s−1 for
the baseline case. These skewed inlet values agree with the baseline data within the
uncertainty of the calculation. This suggests that skewing the inlet velocity profile
does not significantly alter the vortex ring formation.

4.2. 180◦ bend

4.2.1. Design of bend

The 180◦ bend was machined from an acrylic block at a tube radius to radius of
curvature ratio δ/R = 1/7. A schematic of the geometry is presented in figure 21. The
1/7 ratio was selected because of its frequent use in the existing body of literature
on pulsatile flow through curved geometries. A 180◦ bend was similarly selected due
to its prevalence in the literature and to ensure that both the axial and secondary
flows were developed (Swanson, Stalp & Donnelly 1993). A 3 mm deep recess was
machined into each end of the bend apparatus to accommodate the glass tubing,
which was affixed to the bend using silicone caulk. The bend assembly was rigidly
mounted to the index matching enclosure to ensure accurate positioning and stability.

The velocity profile immediately downstream of the bend (less than 1D) is presented
in figure 22 for six phases (refer to figure 21 for axis orientation). The phase associated
with each subplot is indicated on the waveform at the bottom of the figure. During the
acceleration phase (figure 22a), the velocity profile is nearly linear over the majority of
the cross-section, tapering off quickly near the walls. Just after peak flow (figure 22b),



Stenotic flow downstream of a bend 289

u C
L
/u

iw
f

u C
L
/u

iw
f

0 0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5 14D

See below

16D

Baseline
Linear

18D

14D 16D 18D

t/T = 0.238

t/T = 0.236

t/T = 0.220

t/T = 0.218

0.1 0.2 0.3

0.6

0.8

1.0

1.2

t/T = 0.203

t/T = 0.202

t/T

0 0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

See below

0.1 0.2 0.3

0.6

0.8

1.0

1.2

t/T

0 0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

See below

0.1 0.2 0.3

0.6

0.8

1.0

1.2

t/T

Figure 19. Comparison of the IWF normalized centreline velocity for the baseline and linear
insert cases.

0.50
t/T = 0.11 t/T = 0.12 t/T = 0.13

t/T = 0.14 t/T = 0.15 t/T = 0.16

t/T = 0.17 t/T = 0.18

0.25

0y/
D

x/D

V/uc

x/D

1.5 2.0 2.5 3.0 3.5

–0.25
–0.50

0.50

0.25

0y/
D

1.5 2.0 2.5 3.0 3.5

–0.25
–0.50

0.50

0.25

0y/
D

1.5 2.0 2.5 3.0 3.5
0 0.2

0 0.8 1.6 2.4 3.2 4 4.8 5.6 6.4 7.2 8

0.4 0.6
t/T

0.8 1.0

–0.25
–0.50

0.50

Vortex ring

0.25

0

1.5 2.0 2.5 3.0 3.5

–0.25
–0.50

0.50

0.25

0

1.5 2.0 2.5 3.0 3.5

–0.25
–0.50

0.50

0.25

0

1.5 2.0 2.5 3.0 3.5

–0.25
–0.50

0.50

0.25

0

1.5 2.0 2.5 3.0 3.5

–0.25
–0.50

0.50

0.25

0

1.5 2.0 2.5 3.0 3.5

–0.25
–0.50

roll-up

Range of phase
angles

Jet skewing

Figure 20. Vortex ring roll up and jet deflection of the linear insert case; mean velocity
magnitude with overlaid streamlines.

the velocity near the inner radius of curvature begins to decrease resulting in a
slight ‘bowl’ shape. The velocity profile retains its shape while its overall magnitude
decreases during deceleration of the primary peak (figure 22c). In figure 22(c), a region
of backflow is evident as the ‘bowl’ drops below zero. The ‘bowl’ shape disappears
between the secondary and tertiary pulses (figure 22d ), though there are still areas
of reversed flow. The acceleration phase of the tertiary peak (figure 22e) results in
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Figure 21. Schematic diagram of the curved test section.

a profile similar to part a, but with lower overall magnitude; the velocity profile is
again roughly linear over the bulk of the cross-section. Figure 22(f ) shows the velocity
profile over the remainder of the cycle. It is similar to figures 22(a) and 22(e), with
lower bulk velocity magnitudes. The velocity profile is more complex than that for the
linear insert case during the deceleration phase. A few phases are directly compared
in figure 23 to highlight the differences between the bend and linear insert cases.

The secondary flow induced by the Dean’s vortices was measured along a line scan
in the y-direction at x/D = 0.08. The measurement was performed off-centre because
strong reflections along the centreline caused an unacceptably high signal-to-noise
ratio, resulting in poor data. The results of the scan are presented in figure 24. In
general, the secondary flow velocity is about an order of magnitude lower than that
of the axial flow. The orientation of the Dean’s vortices remains the same during
the cycle, with the same sense of rotation as in steady flow. The strongest vortices
occur during the primary and tertiary pulses. At other phases the secondary flow is
considerably weaker. It is unknown whether multiple (Lyne-type) vortex structures
arise. Given the low Womersley number, however, the unsteady inertial effects should
be small and the Stokes layers should be thick. This reduces the likelihood of
significant multiple vortex regimes.

4.2.2. Results

The mean and r.m.s. fluctuating velocity along the tube centreline of the bend case
is compared with the baseline case in figure 25. As in the skewed inlet case, the
stenotic jets do not persist as far downstream in the bend case. The primary pulse
velocity decays by x/D ∼ 5, while the velocities at other phases decay in the x/D ∼ 4
region. As in the other disturbed flow case, this is a reduction relative to the baseline
case of ∼ 2D. The shift of the primary and tertiary pulses in the x/D � 4 region is
evident in the mean velocity (top row of plots) for the bend case. The slope appears
to be similar to that of the baseline case. The r.m.s. velocities of the primary pulse in
both cases are similar except that the peak location is slightly further downstream in
the baseline case. The maximum r.m.s. velocity of the tertiary pulse is centred around
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Figure 22. Cross-sectional velocity profiles immediately downstream of a 180◦ bend x/D < 1
under physiological forcing.

x/D =4, as in the linear case. This is approximately 2D further upstream than the
baseline case.

The time-traces of the baseline and bend cases are directly compared in figure 26.
At 2D the bend case velocity is slightly below that of the baseline case, although
the shapes are qualitatively similar. This is similar to the skewed inlet case results, in
which the centreline velocity at 2D was of lower magnitude and had slightly shifted
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peaks in comparison with the baseline case. At 3D, the shape of the time-trace in
the two cases remains similar, but the magnitude is now considerably lower for the
bend case. By 4D, the bend case velocity magnitudes decrease to the order of the
upstream input waveform. This is the region of high r.m.s. velocity shown in figure 25,
corresponding to flow breakdown. Once the baseline flow has broken down (x/D � 7),
the waveforms of both cases are very similar.
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Figure 27 presents the raw centreline velocity time-traces compared to the input
velocity and acceleration waveforms. The time-traces at 2D and 3D show that
oscillations follow the primary and tertiary pulses for a significant amount of time
and are very predictable. The oscillations become more erratic at 4D and 5D before
disappearing completely further downstream. Similar oscillations were observed in
the baseline case, but their amplitudes were not nearly as large. As observed in the
baseline case, the oscillations begin at the peak of the acceleration waveform and
grow in amplitude throughout the remainder of the acceleration phase and into the
deceleration phase. The flow becomes highly erratic after the peak in the velocity
waveform (i.e. during the deceleration portion of the cycle).
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Figure 26. Centerline velocity comparison; baseline versus bend profile.

The pulse propagation velocity (‘peak shift’) was 10.4 and 6.3 cm s−1 for the primary
and tertiary pulse, respectively. This is of the same order as the velocities computed
in the baseline and skewed inlet profile cases, within experimental uncertainty. As
in the skewed inlet case, the peaks are not evenly spaced, so the values presented
are averages. The good agreement between these values and those of the skewed
inlet and baseline cases suggests that the vortex ring formation is unaffected, despite
the perturbations imposed by the skewed velocity profile and the secondary flow.
The strong agreement between the convection velocities of these coherent structures
in the three cases suggests that the radius and circulation of the vortex rings are
essentially equal, which has been corroborated with PIV data.

The IWF normalized centreline velocity time-traces for the baseline and bend
cases are compared at three downstream locations (16 � x/D � 20) in figure 28. The
centreline velocity in the bend case, as in the other perturbed case, has a persistent
deficit near t/T = 0.45. Additionally, the propagating ridge observed in the baseline
case exists in the bend case and occurs at approximately the same phase angle. Thus
it propagates at the same velocity. The bend case has a velocity magnitude nearer
uCL/uiwf =1 at all phases, meaning that it has relaxed to a fully developed velocity
profile.

4.3. Comparison of the skewed inlet and the skewed inlet with swirl (bend)

Insight into the effect of swirl on stenotic flow development can be obtained via
direct comparison of the skewed inlet case and the flow downstream of the bend
because the effects of skewing and secondary flow have been isolated by these two
experiments. Figure 29 compares the IWF normalized centreline velocity time-traces
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Figure 27. Centerline velocity time-trace comparison; bend.

for these cases. The mean velocity time traces are remarkably similar, showing only
slight variation over the streamwise distance of 16 diameters. It was expected that
sufficiently far downstream, all cases would relax to approximately the same centreline
velocity, but even in close to the stenosis and the velocities associated with the skewed
inlet and bend cases are in considerable agreement. This implies that the effect of swirl
is minor compared to that of the mean velocity profile. Far downstream, presented
in figure 30, the bend case velocities are slightly nearer to the upstream waveform
values (uCL/uiwf =1), suggesting that over time the action of the secondary flow aids
in redevelopment by enhancing momentum redistribution. Table 4 lists the average
deviation of the velocity in each case from the upstream input velocity waveform at
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Figure 29. Comparison of the IWF normalized velocity time-traces of the linear insert and
bend cases to highlight the effect of secondary flow.

the three locations presented in figure 30. It can be concluded from this table that far
downstream, the baseline case deviates most from the fully developed profile, followed
by the skewed inlet case, and the bend case. The jet breakdown in the baseline case
occurs furthest downstream, so it is reasonable that the velocity field requires longer
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14D (%) 16D (%) 18D (%)

Baseline case 18.2 15.7 14.4
Skewed inlet case 16.7 15.3 13.6
Bend case 13.8 11.7 9.4

Table 4. Average deviation of the centreline velocity time-trace of each case from the fully
developed upstream velocity time-trace far downstream.

to redevelop. The two disturbed cases break down in approximately the same region
( ∼ 2D upstream of breakdown in the baseline case). Although the near-field flow
of the bend and skewed inlet profile cases are similar, the bend case redevelops the
quickest. This is hypothesized to be a result of the mixing action of the secondary flow.

5. Summary and conclusions
Experimental measurements concerning the sensitivity of stenotic flows to the inlet

velocity profile and secondary flows were presented. The skewed inlet velocity profile
produced using the porous insert generated axial flow qualitatively similar to the
flow produced via the centripetal action of the flow around the bend, in absence
of secondary flow. The experiments utilized both LDV and PIV measurements to
ascertain the temporal and spatial characteristics of the dominant flow features. The
uncertainties is the mean velocity statistics were ±1 % for LDV and less than ±3 %
for PIV data away from the walls. Uncertainties increased near the wall for both
measurement techniques.

The baseline case consisted of a 75 % (by area) stenosis with imposed physiological
forcing (Holdsworth et al. 1999). Each pulse in the imposed waveform produced a
stenotic jet and corresponding vortex ring that propagated downstream. The jet broke
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down between 6 and 8 diameters downstream of the stenosis. The flow continued
to redevelop for the remainder of the measurement region, never re-establishing the
upstream profile. Vortex rings produced via the Kelvin–Helmholtz instability began
shedding at the phase of the pulsatile cycle where the rate of acceleration was low. This
triggered instabilities further downstream and resulted in the breakdown of the flow.
The frequency at which the vortex rings peeled off was a function of the Reynolds
number at that particular phase, with a higher Reynolds number corresponding to
a higher frequency. Additionally, the frequency was dependent on the disturbance
type.

The vortex ring produced by the primary pulse had a ring Reynolds number of
approximately 450. The location of the vortex ring and its angle with respect to
the tube cross-sectional plane varied slightly from cycle to cycle. A pulse appears to
persist throughout the entire measurement domain and propagate downstream with
a velocity close to that of the primary vortex ring. It appears to originate in a small
time after the primary vortex ring. It is most assuredly not a coherent ring, as any
ring structure would have long since broken down. However, it is apparent in all three
cases. The vortex ring produced by the diastolic pulse has a ring Reynolds number of
280 and a consequent lower velocity. The diastolic peak did not produce a long-lived
pulse.

The two perturbed inlet cases were found to reduce the extent of the coherent
stenotic jet by ∼2D ( ∼30% ). The skewed inlet profile resulted in an asymmetric
radial pressure gradient that forced the jet towards the wall. Comparison of the
skewed inlet case with the flow downstream of the bend showed very little difference,
implying that in the near field, the secondary flow introduced by the bend plays a
lesser role than does the skewed velocity profile. It is the action of the mean flow that
disrupts the stenotic jet and forces premature breakdown.

The vortex rings produced in the perturbed cases by the primary and tertiary
pulses were nearly identical in strength to that produced in the baseline case. It
is likely that a much stronger mean velocity gradient than the peak gradient of
∼4.75 s−1 used in this study would disrupt the vortex ring formation. The vortex
ring formed and propagated downstream with little spatial bias with respect to the
centreline (on average). After the vortex ring passed, the stenotic jet trajectory was
skewed due to the non-uniform radial pressure gradient, as previously discussed.
The symmetry of the stenosis (and mostly likely the stenosis degree) appears to be
the key prerequisite for coherent vortex ring formation. The vortex ring formed by a
symmetric stenosis is not very sensitive to the velocity profile and swirl upstream of the
constriction.

This study demonstrated that the gross flow features of a stenotic flow, such as the
extent of the downstream recirculation region and transition location, are sensitive
to the upstream velocity profile. Previous work has demonstrated that these flows
are also sensitive to geometric perturbations (Varghese et al. 2007a , b) Interestingly,
secondary flow was found to have a minor effect on the gross flow features, suggesting
that numerical models concerned with these macroscopic features need be concerned
primarily with accurate inlet velocity profiles. The impact of the secondary flow may
be within the noise level of the current experiments, though the secondary flow was
relatively strong.

At present, cellular studies conducted in realistic geometries of stenotic vessels
are in their infancy. To the authors’ knowledge, only one study has attempted
to characterize gene expression in a stenotic flow (McCann 2005). Her study was
conducted in steady flow and the spatial resolution was very coarse because of the
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large number of samples (cells) required for a reliable signal. The cellular response
to the stenotic flow was investigated in two regions, one containing the recirculation
region, the reattachment zone, and a portion of the relaminarization region and the
other containing solely the far downstream relaminarization region. In this regard,
the complexity of the current study precludes the results from direct utilization by the
cellular mechanics community. As the spatial resolution of the cell studies in realistic
geometries improves, however, the impact of upstream flow conditioning may be of
concern to biological researchers.
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